Extensions 1→N→G→Q→1 with N=C23 and Q=C9⋊C6

Direct product G=N×Q with N=C23 and Q=C9⋊C6
dρLabelID
C23×C9⋊C672C2^3xC9:C6432,559

Semidirect products G=N:Q with N=C23 and Q=C9⋊C6
extensionφ:Q→Aut NdρLabelID
C23⋊(C9⋊C6) = C2×C32.S4φ: C9⋊C6/C32S3 ⊆ Aut C23186+C2^3:(C9:C6)432,533
C232(C9⋊C6) = C2×D9⋊A4φ: C9⋊C6/D9C3 ⊆ Aut C23546+C2^3:2(C9:C6)432,539
C233(C9⋊C6) = C2×Dic9⋊C6φ: C9⋊C6/3- 1+2C2 ⊆ Aut C2372C2^3:3(C9:C6)432,379

Non-split extensions G=N.Q with N=C23 and Q=C9⋊C6
extensionφ:Q→Aut NdρLabelID
C23.(C9⋊C6) = C62.Dic3φ: C9⋊C6/C32S3 ⊆ Aut C23366-C2^3.(C9:C6)432,249
C23.2(C9⋊C6) = Dic9⋊A4φ: C9⋊C6/D9C3 ⊆ Aut C231086-C2^3.2(C9:C6)432,265
C23.3(C9⋊C6) = C62.27D6φ: C9⋊C6/3- 1+2C2 ⊆ Aut C2372C2^3.3(C9:C6)432,167
C23.4(C9⋊C6) = C22×C9⋊C12central extension (φ=1)144C2^3.4(C9:C6)432,378

׿
×
𝔽